Hod-supercompactness, Indestructibility, and Level by Level Equivalence
نویسنده
چکیده
In an attempt to extend the property of being supercompact but not hod-supercompact to a proper class of indestructibly supercompact cardinals, a theorem is discovered about a proper class of indestructibly supercompact cardinals which reveals a surprising incompatibility. However, it is still possible to force to get a model in which the property of being supercompact but not hod-supercompact holds for the least supercompact cardinal κ0, κ0 is indestructibly supercompact, the strongly compact and supercompact cardinals coincide except at measurable limit points, and level by level equivalence between strong compactness and supercompactness holds above κ0 but fails below κ0. Additionally, we get the property of being supercompact but not hod-supercompact at the least supercompact cardinal, in a model where level by level equivalence between strong compactness and supercompactness holds.
منابع مشابه
A universal indestructibility theorem compatible with level by level equivalence
We prove an indestructibility theorem for degrees of supercompactness that is compatible with level by level equivalence between strong compactness and supercompactness.
متن کاملIndestructibility, Strong Compactness, and Level by Level Equivalence
We show the relative consistency of the existence of two strongly compact cardinals κ1 and κ2 which exhibit indestructibility properties for their strong compactness, together with level by level equivalence between strong compactness and supercompactness holding at all measurable cardinals except for κ1. In the model constructed, κ1’s strong compactness is indestructible under arbitrary κ1-dir...
متن کاملIndestructibility under adding Cohen subsets and level by level equivalence
We construct a model for the level by level equivalence between strong compactness and supercompactness in which the least supercompact cardinal κ has its strong compactness indestructible under adding arbitrarily many Cohen subsets. There are no restrictions on the large cardinal structure of our model.
متن کاملThe Consistency of V = HOD with Level by Level Equivalence
We construct two models showing the relative consistency of V = HOD with the level by level equivalence between strong compactness and supercompactness. In the first model, various versions of the combinatorial principles and ♦ hold. In the second model, the Ground Axiom (GA) holds.
متن کاملIndestructibility and The Level-By-Level Agreement Between Strong Compactness and Supercompactness
Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014